Table 3

Algorithm 3 (TestMOI)


Input: sorted list of all intervals interval[1..n]; number of collections k

Variables: largest end point seen so far in each collection endPoint[1..k]

1: endPoint[1..k] 0

2: prevEnd ← 0

3: min ← 0

4: newEndPoint ← false

5: for <a onClick="popup('http://www.biomedcentral.com/1471-2105/13/S19/S7/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.biomedcentral.com/1471-2105/13/S19/S7/mathml/M4">View MathML</a>interval[1..n] do

6:     if end >endPoint[j] then

7:         if endPoint[j] = min then

8:           newEndPoint ← true

9:         end if

10:       endPoint[j] ← end

11:   end if

12:   if newEndPoint and all intervals with recent start position processed then

13:       min ← mini = 1..k{endPoint[i]}

14:       newEndPoint ← false

15:       if prevEnd < min and min ≥ start then

16:         output MOI(start, min)

17:         prevEnd = min

18:       end if

19:   end if

20: end for


Jahn et al. BMC Bioinformatics 2012 13(Suppl 19):S7   doi:10.1186/1471-2105-13-S19-S7

Open Data