Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

This article is part of the supplement: Selected articles from the BioNLP Shared Task 2011

Open Access Proceedings

Biological event composition

Halil Kilicoglu* and Sabine Bergler

Author affiliations

Department of Computer Science and Software Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Canada

For all author emails, please log on.

Citation and License

BMC Bioinformatics 2012, 13(Suppl 11):S7  doi:10.1186/1471-2105-13-S11-S7

Published: 26 June 2012

Abstract

Background

In recent years, biological event extraction has emerged as a key natural language processing task, aiming to address the information overload problem in accessing the molecular biology literature. The BioNLP shared task competitions have contributed to this recent interest considerably. The first competition (BioNLP'09) focused on extracting biological events from Medline abstracts from a narrow domain, while the theme of the latest competition (BioNLP-ST'11) was generalization and a wider range of text types, event types, and subject domains were considered. We view event extraction as a building block in larger discourse interpretation and propose a two-phase, linguistically-grounded, rule-based methodology. In the first phase, a general, underspecified semantic interpretation is composed from syntactic dependency relations in a bottom-up manner. The notion of embedding underpins this phase and it is informed by a trigger dictionary and argument identification rules. Coreference resolution is also performed at this step, allowing extraction of inter-sentential relations. The second phase is concerned with constraining the resulting semantic interpretation by shared task specifications. We evaluated our general methodology on core biological event extraction and speculation/negation tasks in three main tracks of BioNLP-ST'11 (GENIA, EPI, and ID).

Results

We achieved competitive results in GENIA and ID tracks, while our results in the EPI track leave room for improvement. One notable feature of our system is that its performance across abstracts and articles bodies is stable. Coreference resolution results in minor improvement in system performance. Due to our interest in discourse-level elements, such as speculation/negation and coreference, we provide a more detailed analysis of our system performance in these subtasks.

Conclusions

The results demonstrate the viability of a robust, linguistically-oriented methodology, which clearly distinguishes general semantic interpretation from shared task specific aspects, for biological event extraction. Our error analysis pinpoints some shortcomings, which we plan to address in future work within our incremental system development methodology.