Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Highly Accessed Research article

Core module biomarker identification with network exploration for breast cancer metastasis

Ruoting Yang1, Bernie J Daigle2, Linda R Petzold123 and Francis J Doyle14*

Author Affiliations

1 Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, CA 93106-5080, USA

2 Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106-5110, USA

3 Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106-5070, USA

4 Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106-5080, USA

For all author emails, please log on.

BMC Bioinformatics 2012, 13:12  doi:10.1186/1471-2105-13-12

Published: 18 January 2012

Abstract

Background

In a complex disease, the expression of many genes can be significantly altered, leading to the appearance of a differentially expressed "disease module". Some of these genes directly correspond to the disease phenotype, (i.e. "driver" genes), while others represent closely-related first-degree neighbours in gene interaction space. The remaining genes consist of further removed "passenger" genes, which are often not directly related to the original cause of the disease. For prognostic and diagnostic purposes, it is crucial to be able to separate the group of "driver" genes and their first-degree neighbours, (i.e. "core module") from the general "disease module".

Results

We have developed COMBINER: COre Module Biomarker Identification with Network ExploRation. COMBINER is a novel pathway-based approach for selecting highly reproducible discriminative biomarkers. We applied COMBINER to three benchmark breast cancer datasets for identifying prognostic biomarkers. COMBINER-derived biomarkers exhibited 10-fold higher reproducibility than other methods, with up to 30-fold greater enrichment for known cancer-related genes, and 4-fold enrichment for known breast cancer susceptible genes. More than 50% and 40% of the resulting biomarkers were cancer and breast cancer specific, respectively. The identified modules were overlaid onto a map of intracellular pathways that comprehensively highlighted the hallmarks of cancer. Furthermore, we constructed a global regulatory network intertwining several functional clusters and uncovered 13 confident "driver" genes of breast cancer metastasis.

Conclusions

COMBINER can efficiently and robustly identify disease core module genes and construct their associated regulatory network. In the same way, it is potentially applicable in the characterization of any disease that can be probed with microarrays.