Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

This article is part of the supplement: Third International Workshop on Data and Text Mining in Bioinformatics (DTMBio) 2009

Open Access Proceedings

Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS

Hwanjo Yu1, Taehoon Kim1, Jinoh Oh1, Ilhwan Ko1, Sungchul Kim1 and Wook-Shin Han2*

Author Affiliations

1 CSE Department, POSTECH, Pohang, South Korea

2 CE Department, Kyungpook National University, Daegu, South Korea

For all author emails, please log on.

BMC Bioinformatics 2010, 11(Suppl 2):S6  doi:10.1186/1471-2105-11-S2-S6

Published: 16 April 2010

Abstract

Background

Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed.

Results

RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed webcite.

Conclusions

RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user’s feedback and efficiently processes the function to return relevant articles in real time.