Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Research article

Predicting β-turns and their types using predicted backbone dihedral angles and secondary structures

Petros Kountouris and Jonathan D Hirst*

Author Affiliations

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK

For all author emails, please log on.

BMC Bioinformatics 2010, 11:407  doi:10.1186/1471-2105-11-407

Published: 31 July 2010



β-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains.


We have developed a novel method that predicts β-turns and their types using information from multiple sequence alignments, predicted secondary structures and, for the first time, predicted dihedral angles. Our method uses support vector machines, a supervised classification technique, and is trained and tested on three established datasets of 426, 547 and 823 protein chains. We achieve a Matthews correlation coefficient of up to 0.49, when predicting the location of β-turns, the highest reported value to date. Moreover, the additional dihedral information improves the prediction of β-turn types I, II, IV, VIII and "non-specific", achieving correlation coefficients up to 0.39, 0.33, 0.27, 0.14 and 0.38, respectively. Our results are more accurate than other methods.


We have created an accurate predictor of β-turns and their types. Our method, called DEBT, is available online at webcite.