Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Highly Accessed Research article

Assembly complexity of prokaryotic genomes using short reads

Carl Kingsford*, Michael C Schatz and Mihai Pop

Author Affiliations

Department of Computer Science and Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA

For all author emails, please log on.

BMC Bioinformatics 2010, 11:21  doi:10.1186/1471-2105-11-21

Published: 12 January 2010

Abstract

Background

De Bruijn graphs are a theoretical framework underlying several modern genome assembly programs, especially those that deal with very short reads. We describe an application of de Bruijn graphs to analyze the global repeat structure of prokaryotic genomes.

Results

We provide the first survey of the repeat structure of a large number of genomes. The analysis gives an upper-bound on the performance of genome assemblers for de novo reconstruction of genomes across a wide range of read lengths. Further, we demonstrate that the majority of genes in prokaryotic genomes can be reconstructed uniquely using very short reads even if the genomes themselves cannot. The non-reconstructible genes are overwhelmingly related to mobile elements (transposons, IS elements, and prophages).

Conclusions

Our results improve upon previous studies on the feasibility of assembly with short reads and provide a comprehensive benchmark against which to compare the performance of the short-read assemblers currently being developed.