Email updates

Keep up to date with the latest news and content from BMC Biochemistry and BioMed Central.

Open Access Highly Accessed Open Badges Research article

Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life

Pernille Bøttger124 and Lene Pedersen123*

Author Affiliations

1 Department of Molecular Biology, Aarhus University, C. F. Møllers Allé 3, Aarhus C, DK-8000, Denmark

2 Institute of Clinical Medicine, Aarhus University, Brendstrupgårdsvej 100, Aarhus N, DK-8200, Denmark

3 Department of Haematology, Aarhus University Hospital, Tage-Hansens gade 2, DK-8000 Aarhus C, Denmark

4 Department of Medical Biochemistry, Ole Worms Allé 3, Aarhus University, DK-8000 Aarhus C, Denmark

For all author emails, please log on.

BMC Biochemistry 2011, 12:21  doi:10.1186/1471-2091-12-21

Published: 17 May 2011



The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na+- or H+-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na+-dependent Pi (NaPi) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins.


We show that the human PiT2 histidine, H502, and the human PiT1 glutamate, E70, - both conserved in eukaryotic PiT family members - are critical for Pi transport function. Noticeably, human PiT2 H502 is located in the C-terminal PiT family signature sequence, and human PiT1 E70 is located in ProDom domains characteristic for all PiT family members.

A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR254-V483), was found to be a fully functional Pi transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL183-V483) did also support Pi transport albeit at very low levels.


The results suggest that the overall structure of the Pi-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship.